QFT I exercises - sheet 1

Fun with Noether

Consider a complex scalar field ϕ with Lagrangian density

$$\mathcal{L} = (\partial_{\mu}\phi^*)(\partial^{\mu}\phi) - m^2\phi^*\phi$$

- a Compute the equation of motion for ϕ with the Euler-Lagrange equation.
- b Compute the energy-momentum tensor $T_{\mu\nu}$ and check $\partial_{\mu}T^{\mu\nu} = 0$.
- c Compute the momentum density $\pi(x)$ and $\pi^*(x)$ conjugated to ϕ^* and ϕ .
- d Compute the Hamilton density from the previous result and verify explicitly that $T_{00} = \mathcal{H}$
- e Verify the Lagrangian is invariant under $\phi \to e^{i\alpha}\phi$ for a constant α
- f Compute the Noether current j^{μ} associated to this transformation.
- g Compute the variation of the Lagrangian under $\phi \to e^{i\alpha}\phi$ for a nonconstant α . How is this result related to the Noether current?

We add a term $\propto A_{\mu}j^{\mu}$ to the Lagrangian with a new field A_{μ} . Consider transforming $\phi \to e^{i\alpha}\phi$ together with $A_{\mu} \to A_{\mu} + \delta_{\mu}$ for some vector δ_{μ} .

- h What should δ be to make the new Lagrangian invariant under this transformation for constant α ?
- i What should δ be to make the new Lagrangian invariant under this transformation for *non*-constant $\alpha(x)$ (disregarding the transformation of j in $j_{\mu}A^{\mu}$)?
- j Suggest/guess a physical interpretation of A_{μ} .
- k (BONUS) Consider the variation of the current j in the $j_{\mu}A^{\mu}$ term. Find the term needed to make the Lagrangian completely invariant.
- 1 (BONUS) The Lagrangian given above is invariant under constant translations. Give an argument (not necessarily sufficient :)) that to make the Lagrangian invariant under non-constant translations one has to introduce a field with *two* Lorentz indices. Suggest/guess a physical interpretation of said field.

The exercise above contains a number of steps to make a Lagrangian which is invariant under a constant ('global') symmetry transformation invariant under non-constant ('local') transformation. This is sometimes known as the 'Noether procedure'.

The Lagrangian of Electrodynamics

Let $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ be the electromagnetic field strength tensor. Consider the Lagrangian density

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j_{\mu}A^{\mu}$$

where j_{μ} is some real function.

- a Show the first term in \mathcal{L} is invariant under $A_{\mu} \to A_{\mu} + \partial_{\mu} f(x)$ for an arbitrary function f(x)
- b Show the Euler-Lagrange equations for this Lagrangian are equivalent to the Maxwell equations

There are more terms we could add to the Lagrangian which are Lorentz invariant and invariant under $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} f(x)$. An example of such a term is

 $\propto F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu
u
ho\sigma}$

- c Show that $F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma} = \partial_{\mu}C^{\mu}$ for some vector C^{μ} . Hint: first show that anything containing $\ldots \epsilon^{\mu\nu\rho\sigma} (\partial_{\mu}\partial_{\nu}f(x))$ is zero.
- d Argue that because of this $F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$ does not change under local variations of the field A which go to zero fast enough at infinity.
- e Argue that because of this $F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$ will not contribute to the equations of motion of A^{μ}

The vector C^{μ} is a special case of what is known as a 'Chern-Simons current'. The particular combination $F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$ is known in physics as a 'topological invariant'.